3.153 \(\int \frac {(a+i a \tan (e+f x))^2}{(d \tan (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=66 \[ -\frac {4 (-1)^{3/4} a^2 \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )}{d^{3/2} f}-\frac {2 a^2}{d f \sqrt {d \tan (e+f x)}} \]

[Out]

-4*(-1)^(3/4)*a^2*arctan((-1)^(3/4)*(d*tan(f*x+e))^(1/2)/d^(1/2))/d^(3/2)/f-2*a^2/d/f/(d*tan(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 66, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {3542, 3533, 205} \[ -\frac {4 (-1)^{3/4} a^2 \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )}{d^{3/2} f}-\frac {2 a^2}{d f \sqrt {d \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[e + f*x])^2/(d*Tan[e + f*x])^(3/2),x]

[Out]

(-4*(-1)^(3/4)*a^2*ArcTan[((-1)^(3/4)*Sqrt[d*Tan[e + f*x]])/Sqrt[d]])/(d^(3/2)*f) - (2*a^2)/(d*f*Sqrt[d*Tan[e
+ f*x]])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3533

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(2*c^2)/f, S
ubst[Int[1/(b*c - d*x^2), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]

Rule 3542

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[
((b*c - a*d)^2*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Ta
n[e + f*x])^(m + 1)*Simp[a*c^2 + 2*b*c*d - a*d^2 - (b*c^2 - 2*a*c*d - b*d^2)*Tan[e + f*x], x], x], x] /; FreeQ
[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && NeQ[a^2 + b^2, 0]

Rubi steps

\begin {align*} \int \frac {(a+i a \tan (e+f x))^2}{(d \tan (e+f x))^{3/2}} \, dx &=-\frac {2 a^2}{d f \sqrt {d \tan (e+f x)}}+\frac {\int \frac {2 i a^2 d-2 a^2 d \tan (e+f x)}{\sqrt {d \tan (e+f x)}} \, dx}{d^2}\\ &=-\frac {2 a^2}{d f \sqrt {d \tan (e+f x)}}-\frac {\left (8 a^4\right ) \operatorname {Subst}\left (\int \frac {1}{2 i a^2 d^2+2 a^2 d x^2} \, dx,x,\sqrt {d \tan (e+f x)}\right )}{f}\\ &=-\frac {4 (-1)^{3/4} a^2 \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )}{d^{3/2} f}-\frac {2 a^2}{d f \sqrt {d \tan (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.50, size = 147, normalized size = 2.23 \[ -\frac {2 a^2 e^{-2 i (e+f x)} (\cos (2 (e+f x))+i \sin (2 (e+f x))) \left (\sqrt {i \tan (e+f x)}-2 i \tan (e+f x) \tanh ^{-1}\left (\sqrt {\frac {-1+e^{2 i (e+f x)}}{1+e^{2 i (e+f x)}}}\right )\right )}{d f \sqrt {\frac {-1+e^{2 i (e+f x)}}{1+e^{2 i (e+f x)}}} \sqrt {d \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + I*a*Tan[e + f*x])^2/(d*Tan[e + f*x])^(3/2),x]

[Out]

(-2*a^2*(Cos[2*(e + f*x)] + I*Sin[2*(e + f*x)])*(Sqrt[I*Tan[e + f*x]] - (2*I)*ArcTanh[Sqrt[(-1 + E^((2*I)*(e +
 f*x)))/(1 + E^((2*I)*(e + f*x)))]]*Tan[e + f*x]))/(d*E^((2*I)*(e + f*x))*Sqrt[(-1 + E^((2*I)*(e + f*x)))/(1 +
 E^((2*I)*(e + f*x)))]*f*Sqrt[d*Tan[e + f*x]])

________________________________________________________________________________________

fricas [C]  time = 0.64, size = 349, normalized size = 5.29 \[ -\frac {{\left (d^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} - d^{2} f\right )} \sqrt {\frac {16 i \, a^{4}}{d^{3} f^{2}}} \log \left (\frac {{\left (-4 i \, a^{2} d e^{\left (2 i \, f x + 2 i \, e\right )} + {\left (i \, d^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} + i \, d^{2} f\right )} \sqrt {\frac {-i \, d e^{\left (2 i \, f x + 2 i \, e\right )} + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {16 i \, a^{4}}{d^{3} f^{2}}}\right )} e^{\left (-2 i \, f x - 2 i \, e\right )}}{2 \, a^{2}}\right ) - {\left (d^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} - d^{2} f\right )} \sqrt {\frac {16 i \, a^{4}}{d^{3} f^{2}}} \log \left (\frac {{\left (-4 i \, a^{2} d e^{\left (2 i \, f x + 2 i \, e\right )} + {\left (-i \, d^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} - i \, d^{2} f\right )} \sqrt {\frac {-i \, d e^{\left (2 i \, f x + 2 i \, e\right )} + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {16 i \, a^{4}}{d^{3} f^{2}}}\right )} e^{\left (-2 i \, f x - 2 i \, e\right )}}{2 \, a^{2}}\right ) - {\left (-8 i \, a^{2} e^{\left (2 i \, f x + 2 i \, e\right )} - 8 i \, a^{2}\right )} \sqrt {\frac {-i \, d e^{\left (2 i \, f x + 2 i \, e\right )} + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}}{4 \, {\left (d^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} - d^{2} f\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^2/(d*tan(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

-1/4*((d^2*f*e^(2*I*f*x + 2*I*e) - d^2*f)*sqrt(16*I*a^4/(d^3*f^2))*log(1/2*(-4*I*a^2*d*e^(2*I*f*x + 2*I*e) + (
I*d^2*f*e^(2*I*f*x + 2*I*e) + I*d^2*f)*sqrt((-I*d*e^(2*I*f*x + 2*I*e) + I*d)/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(1
6*I*a^4/(d^3*f^2)))*e^(-2*I*f*x - 2*I*e)/a^2) - (d^2*f*e^(2*I*f*x + 2*I*e) - d^2*f)*sqrt(16*I*a^4/(d^3*f^2))*l
og(1/2*(-4*I*a^2*d*e^(2*I*f*x + 2*I*e) + (-I*d^2*f*e^(2*I*f*x + 2*I*e) - I*d^2*f)*sqrt((-I*d*e^(2*I*f*x + 2*I*
e) + I*d)/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(16*I*a^4/(d^3*f^2)))*e^(-2*I*f*x - 2*I*e)/a^2) - (-8*I*a^2*e^(2*I*f*
x + 2*I*e) - 8*I*a^2)*sqrt((-I*d*e^(2*I*f*x + 2*I*e) + I*d)/(e^(2*I*f*x + 2*I*e) + 1)))/(d^2*f*e^(2*I*f*x + 2*
I*e) - d^2*f)

________________________________________________________________________________________

giac [C]  time = 3.14, size = 93, normalized size = 1.41 \[ \frac {\frac {4 i \, \sqrt {2} a^{2} \arctan \left (-\frac {16 i \, \sqrt {d^{2}} \sqrt {d \tan \left (f x + e\right )}}{-8 i \, \sqrt {2} d^{\frac {3}{2}} + 8 \, \sqrt {2} \sqrt {d^{2}} \sqrt {d}}\right )}{\sqrt {d} f {\left (-\frac {i \, d}{\sqrt {d^{2}}} + 1\right )}} - \frac {2 \, a^{2}}{\sqrt {d \tan \left (f x + e\right )} f}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^2/(d*tan(f*x+e))^(3/2),x, algorithm="giac")

[Out]

(4*I*sqrt(2)*a^2*arctan(-16*I*sqrt(d^2)*sqrt(d*tan(f*x + e))/(-8*I*sqrt(2)*d^(3/2) + 8*sqrt(2)*sqrt(d^2)*sqrt(
d)))/(sqrt(d)*f*(-I*d/sqrt(d^2) + 1)) - 2*a^2/(sqrt(d*tan(f*x + e))*f))/d

________________________________________________________________________________________

maple [C]  time = 0.17, size = 371, normalized size = 5.62 \[ \frac {i a^{2} \left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )}{2 f \,d^{2}}+\frac {i a^{2} \left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )}{f \,d^{2}}-\frac {i a^{2} \left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )}{f \,d^{2}}-\frac {a^{2} \sqrt {2}\, \ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )}{2 f d \left (d^{2}\right )^{\frac {1}{4}}}-\frac {a^{2} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )}{f d \left (d^{2}\right )^{\frac {1}{4}}}+\frac {a^{2} \sqrt {2}\, \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )}{f d \left (d^{2}\right )^{\frac {1}{4}}}-\frac {2 a^{2}}{d f \sqrt {d \tan \left (f x +e \right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(f*x+e))^2/(d*tan(f*x+e))^(3/2),x)

[Out]

1/2*I/f*a^2/d^2*(d^2)^(1/4)*2^(1/2)*ln((d*tan(f*x+e)+(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2))/(d*
tan(f*x+e)-(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2)))+I/f*a^2/d^2*(d^2)^(1/4)*2^(1/2)*arctan(2^(1/
2)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1)-I/f*a^2/d^2*(d^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+
e))^(1/2)+1)-1/2/f*a^2/d*2^(1/2)/(d^2)^(1/4)*ln((d*tan(f*x+e)-(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(
1/2))/(d*tan(f*x+e)+(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2)))-1/f*a^2/d*2^(1/2)/(d^2)^(1/4)*arcta
n(2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1)+1/f*a^2/d*2^(1/2)/(d^2)^(1/4)*arctan(-2^(1/2)/(d^2)^(1/4)*(d*tan
(f*x+e))^(1/2)+1)-2*a^2/d/f/(d*tan(f*x+e))^(1/2)

________________________________________________________________________________________

maxima [C]  time = 1.16, size = 176, normalized size = 2.67 \[ -\frac {a^{2} {\left (-\frac {\left (2 i - 2\right ) \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} + 2 \, \sqrt {d \tan \left (f x + e\right )}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} - \frac {\left (2 i - 2\right ) \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} - 2 \, \sqrt {d \tan \left (f x + e\right )}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} - \frac {\left (i + 1\right ) \, \sqrt {2} \log \left (d \tan \left (f x + e\right ) + \sqrt {2} \sqrt {d \tan \left (f x + e\right )} \sqrt {d} + d\right )}{\sqrt {d}} + \frac {\left (i + 1\right ) \, \sqrt {2} \log \left (d \tan \left (f x + e\right ) - \sqrt {2} \sqrt {d \tan \left (f x + e\right )} \sqrt {d} + d\right )}{\sqrt {d}}\right )} + \frac {4 \, a^{2}}{\sqrt {d \tan \left (f x + e\right )}}}{2 \, d f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^2/(d*tan(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

-1/2*(a^2*(-(2*I - 2)*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(d) + 2*sqrt(d*tan(f*x + e)))/sqrt(d))/sqrt(d) -
 (2*I - 2)*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*sqrt(d) - 2*sqrt(d*tan(f*x + e)))/sqrt(d))/sqrt(d) - (I + 1)*s
qrt(2)*log(d*tan(f*x + e) + sqrt(2)*sqrt(d*tan(f*x + e))*sqrt(d) + d)/sqrt(d) + (I + 1)*sqrt(2)*log(d*tan(f*x
+ e) - sqrt(2)*sqrt(d*tan(f*x + e))*sqrt(d) + d)/sqrt(d)) + 4*a^2/sqrt(d*tan(f*x + e)))/(d*f)

________________________________________________________________________________________

mupad [B]  time = 4.29, size = 55, normalized size = 0.83 \[ -\frac {2\,a^2}{d\,f\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}}+\frac {2\,\sqrt {4{}\mathrm {i}}\,a^2\,\mathrm {atanh}\left (\frac {\sqrt {4{}\mathrm {i}}\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}}{2\,\sqrt {d}}\right )}{d^{3/2}\,f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*tan(e + f*x)*1i)^2/(d*tan(e + f*x))^(3/2),x)

[Out]

(2*4i^(1/2)*a^2*atanh((4i^(1/2)*(d*tan(e + f*x))^(1/2))/(2*d^(1/2))))/(d^(3/2)*f) - (2*a^2)/(d*f*(d*tan(e + f*
x))^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - a^{2} \left (\int \left (- \frac {1}{\left (d \tan {\left (e + f x \right )}\right )^{\frac {3}{2}}}\right )\, dx + \int \frac {\tan ^{2}{\left (e + f x \right )}}{\left (d \tan {\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx + \int \left (- \frac {2 i \tan {\left (e + f x \right )}}{\left (d \tan {\left (e + f x \right )}\right )^{\frac {3}{2}}}\right )\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))**2/(d*tan(f*x+e))**(3/2),x)

[Out]

-a**2*(Integral(-1/(d*tan(e + f*x))**(3/2), x) + Integral(tan(e + f*x)**2/(d*tan(e + f*x))**(3/2), x) + Integr
al(-2*I*tan(e + f*x)/(d*tan(e + f*x))**(3/2), x))

________________________________________________________________________________________